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Abstract Multimodal brain imaging data can be obtained conveniently through rapidly advancing neu-

roimaging techniques. These multimodal data, which characterize the brain from distinct perspectives, offer

a rare opportunity to comprehensively understand the neuropathology of complex brain disorders. Thus,

identifying hidden relationships among multimodal brain imaging data is essential and meaningful. The

pairwise correlation between two imaging modalities has been extensively studied. However, the multi-way

association among more than three modalities remains unclear and is highly challenging. The difficulty and

indeterminacy are largely due to the loss imbalances caused by multiple modalities fusion and the lack of

reasonable consideration of the relationship implicated in different brain areas. To address both issues, we

propose a structured sparse multiview canonical correlation analysis (SMCCA) with adaptive loss balanc-

ing and a novel graph-group penalty. The adaptive loss balancing technique encourages SMCCA to fairly

optimize each sub-objective. The graph-group constraint penalizes the brain’s regions of interest (ROIs)

hierarchically with different regularizations at different levels. We derive an efficient algorithm and present

its convergence. Experimental results on synthetic and real neuroimaging data confirm that, compared with

state-of-the-art methods, our method is a better alternative as it identifies higher or comparable correlation

coefficients and better canonical weights. Importantly, delivered by the canonical weights, the identified ROIs

of each modality show a high correlation to each other and brain disorders, which demonstrates the potential

of our method for untangling the intricate relationship among multimodal brain imaging data.
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1 Introduction

Alzheimer’s disease (AD) is a severe chronic neurodegenerative disease, and its pathogenesis is still under
way [1]. Neuroimaging techniques have opened the door to investigate AD and other brain disorders
non-invasively. Owing to this advantage, we have acquired many neuroimaging manifestations of AD,
including the atrophic brain structure, declined metabolic rates of cerebral glucose, and accumulation of
extracellular plaques of amyloid beta (Aβ) [2, 3]. In practice, the use of each characterization alone is
generally insufficient to accurately diagnose an at-risk individual because many of them might not be AD-
only characteristics [4]. For example, in addition to AD, hippocampal atrophy also happens to patients
with frontotemporal lobar degeneration (FTLD) [5], and Aβ deposition is also associated with Parkinson’s
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disease [6]. Reasonably, a single marker is insufficient for the diagnosis or treatment of a specific disease.
Hence, jointly using multiple imaging markers, especially those of multiple brain imaging modalities,
can take full advantage of the cross-complementary information of different modalities. It can also
provide rich knowledge of brain structure and function and is useful for developing deep neurophysiological
characteristics. Taking AD as an example, structural brain atrophy, brain glucose metabolic rate, and β-
amyloid extracellular plaque accumulation are all very sensitive markers, and they are carried by different
brain imaging data. Evidently, a combination of them can help accurately identify an individual under
risk. Therefore, jointly using the characteristics of multiple modalities other than those of a unimodal
one could be beneficial to understand the neuropathology of AD and other disorders [7–13].

In general, there are two distinct strategies to take advantage of the complementary information of
multimodal brain imaging data. The first kind, which offers the largest quantity of methods, is roughly
divided into the feature-level fusion and result-level fusion [2]. As their names suggest, the feature-level
fusion concatenates different imaging features of multimodal data as a whole, and the result-level fusion
jointly analyzes the independent result obtained from every single modality. These methods have shown
great success in case-control studies, such as classification, cognition ability prediction, and blind source
separation [2, 7, 14]. Essentially, they mainly focus on prediction tasks and thus ignore the complex
relationship embedded in multimodal data.

The second kind of multimodal method intends to exploit the relationship between heterogeneous
imaging features of multiple modalities. This strategy has widened and deepened our knowledge of
AD [15–18]. Examples include, but are not limited to, the association between Aβ burdens and white
matter hyperintensities (WMHs) and that between brain atrophy and hypometabolism. The relationship
between Aβ burdens andWMHs reveals that they affect cognition differently, and the structural atrophy is
in agreement with the hypometabolism spanning the whole brain [18]. Importantly, this between-modality
relationship could be a reasonable hallmark to accurately diagnose a suspected individual because a
compositional characterization of multimodal data can be better than that of a unimodal one. As a
result, accurately identifying the association between multimodal brain imaging data would be helpful
in revealing the pathology of AD. Finally, it could help reduce the false-positive rate, determine the
spectrum subtype of disorders, and lead to personalized medicine and precision medicine [19].

The above-mentioned methods are usually designed to mine the pairwise relationship between two
imaging modalities. Hence, they cannot be directly applied to three or more modalities of imaging
data, which dramatically limits their application in brain science, as currently, multiple types of brain
imaging data from distinct perspectives carry rich information. To better understand AD, a critical and
meaningful challenge is to seek the multi-way association embedded in heterogeneous multimodal brain
imaging data. Therefore, designing novel methods for identifying the complex multi-way association from
multimodal imaging data is an urgent need.

Sparse multiview canonical correlation analysis (SMCCA) [20,21] could be an alternative, but two sig-
nificant drawbacks keep us from using it. First, the pairwise associations of different modality-pairs could
be different due to heterogeneous and diverse changing patterns in multiple modalities. This condition
incurs the biased optimization issue for multiple sub-objectives which is called the loss imbalance [22].
Second, SMCCA either employs the ℓ1-norm or fused lasso penalty and thus cannot reasonably reveal
the hierarchical organization of the brain [23]. The human brain exhibits a marked symmetry across the
sagittal plane, indicating a grouping structure between the left and right hemispheres [23]. Meanwhile,
the brain’s left and right hemispheres are not identical to each other, so the left and right components
could have their own structure and function [24]. Thus, identifying relevant brain areas at different levels
would be helpful in understanding the hierarchical structure of the human brain.

One may argue that a popular strategy exists in medical imaging, which uses multimodal information
to obtain a good-quality brain imaging scan [25–28]. For example, Feng et al. [25] transferred multi-scale
features from a target modality to the auxiliary modality, by which magnetic resonance (MR) imaging
could be accepted for follow-up usage. They also designed a multi-stage integration network to extract the
associations among hierarchical stages of different contrasts for super-resolution. As we aim to investigate
AD’s imaging characteristics under different modalities, these imaging techniques could be distinct and
cannot address the issue raised above.

In this paper, we propose an adaptive structured SMCCA (i.e., gradient normalization-based SM-
CCA (GradNorm SMCCA)) with the gradient normalization-based loss balancing technique and a new
graph-group penalty to overcome the aforementioned drawbacks. The gradient normalization technique
dynamically adjusts the importance of each sub-objective to prompt an overall optimization. The graph-
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group penalty function penalizes brain regions of interest (ROIs) hierarchically by first grouping the
ROIs of the left and right hemispheres and then networking ROIs spanning the whole brain. We pro-
vided an effective algorithm to optimize our model and its convergence. We compared our method with
SMCCA [20], Adaptive SMCCA [29], and graph-guided pairwise group lasso (GGL) SMCCA [30] us-
ing synthetic datasets and real neuroimaging data from the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) database. The ablation experimental results demonstrated that GradNorm SMCCA has flexible
and good bi-multivariate association identification and feature selection capabilities. In particular, our
method estimates the best overall association and more clear and meaningful imaging features of multi-
ple modalities. Hence, it is very promising in untangling complex associations among multimodal brain
imaging data.

2 Method

In this paper, we present the scalars as italic letters, column vectors as boldface lowercase letters, and
matrices as boldface capitals. Xi ∈ R

n×p (i = 1, . . . ,M) denotes the i-th modality of the brain imag-
ing data with n subjects and p imaging quantitative traits (QTs), where M is the number of imaging
modalities. ‖x‖2 denotes the Euclidean norm of the vector x.

2.1 Sparse multiview canonical correlation analysis

SMCCA can be directly applied to analyze the pairwise association of more than three data matrices
(modalities). According to [20], SMCCA is defined as follows:

min
u1,...,uM

M∑

i,j=1;i<j

−u
T
i X

T
i Xjuj +

M∑

i=1

λi ‖ui‖1 , (1)

s.t. ‖Xiui‖
2
2 = 1, i = 1, . . . ,M,

which can be equivalently rewritten as

min
u1,...,uM

M∑

i,j=1;i<j

‖Xiui −Xjuj‖
2
2 +

M∑

i=1

λi ‖ui‖1 , (2)

s.t. ‖Xiui‖
2
2 = 1, i = 1, . . . ,M.

ui ∈ R
p×1 denotes the canonical weight corresponding to Xi, i.e., the i-th modality of imaging QTs.

‖ui‖1 is the ℓ1-norm. λi is a tradeoff parameter used to control the model sparsity.
Nonetheless, SMCCA has two drawbacks. First, SMCCA treats every sub-objective equally. For

multimodal problems, the correlations of different modality-pairs are usually different due to the het-
erogeneous and diverse changing patterns for distinct modalities. Therefore, treating all sub-objectives
equally could be suboptimal because this simple fusion strategy might focus on easy sub-objectives while
inadequately optimizing the hard ones. Second, SMCCA only selects imaging features at the individual
level. As analyzed earlier, the human brain exhibits a complex organization of brain areas, and the lack
of consideration of the hierarchical organization of the brain might be inefficient.

2.2 GradNorm SMCCA

To attain the overall optimization and account for the brain’s hierarchical structure, we propose an
adaptive structured SMCCA (GradNorm SMCCA) based on the gradient normalization loss balancing
technique and a new graph-group penalty. We first define GradNorm SMCCA as follows:

min
u1,...,uM

M∑

i,j=1;i<j

sij ‖Xiui −Xjuj‖
2
2 +

M∑

i=1

(λi1Ωg2(ui) + λi2 ‖ui‖2) , (3)

s.t. ‖Xiui‖
2
2 = 1, i = 1, . . . ,M.

Xi and ui are the same as those of SMCCA. sij here is a loss balancing parameter. λi1 and λi2 are
nonnegative tuning parameters, which are usually obtained via the grid search strategy. Ωg2(ui) is the
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penalty identifying desirable imaging features in accordance with the brain’s hierarchical structure. ‖ui‖2
is used to ensure model stability.

In summary, our method has two advantages. First, the adaptive weight sij can dynamically adjust
the importance of each sub-objective and thus enables a comprehensive optimization for all objectives.
Second, our method holds the grouping effect at two different levels, i.e., grouping the ROIs of the left
and right hemispheres and highly correlated ROIs spanning the whole brain, indicating a flexible and
meaningful feature selection capability. Next, we will introduce the gradient normalization method and
graph-group penalty in detail.

2.2.1 Gradient normalization-based loss balancing

To ensure a comprehensive optimization, the balancing weight sij should be different for different sub-
objectives. A naive strategy is to find sij ’s through cross-validation. However, in practice, this is a
very inefficient method due to the unsearchable candidate set and high computational effort. Therefore,
an adaptive sij , which is time-varying in accordance with the sub-objective’s importance during the
optimization, is preferable.

Furthermore, in optimization, the convergence speed is largely determined by the gradient amplitude
of the loss function. Hence, the biased optimization issue of a model (3) could be caused by the distinct
gradients of its multiple sparse canonical correlation analysis (SCCA) sub-objectives. On this account,
sij should be a function of the gradient of the i-th loss Lij , i.e.,

sij = f(∇Lij). (4)

In addition, we utilize two ratios, e.g., the longitudinal ratio and the cross-sectional ratio, to control
the optimization of the proposed SMCCA. The longitudinal ratio measures the optimization rate of each
sub-objective at time t, where t is the iteration number. The cross-sectional ratio is the relative inverse
training rate of each sub-objective. Clearly, the longitudinal ratio indicates the optimization rate of a
single sub-objective at different iterations, while the cross-sectional one measures the optimization rate of
multiple sub-objectives at the same iteration. Therefore, using both ratios in combination can effectively
balance multiple sub-objectives and finally achieve the overall optimization [22].

Specifically, the longitudinal ratio is defined as

r
long

ij (t) =
Lij(t)

Lij(0)
,

and the cross-sectional ratio is

rcsij (t) =
r
long

ij (t)

E (Lij(t))
,

where E (Lij(t)) is the average ratio of all sub-objectives.
We then define the loss function of sij as

Lgrad(t; sij(t)) =

M∑

i,j=1,i6j

∣
∣Gij(t)− Ḡ(t)× [rcsij (t)]

α
∣
∣ , (5)

where Gij(t) denotes the ℓ2-norm of the gradient of sijLij at the t-th iteration and Ḡ(t) is the average
value of all Gij(t)’s. α is a hyperparameter determining the strength of the restoring force, which pulls
sub-objectives back to a common optimization rate [22].

Taken together, the gradient, longitudinal ratio, and cross-sectional ratio can prompt a comprehensive
optimization for all sub-objectives.

2.2.2 Graph-group penalty

Because the human brain exhibits group and graph structures, a model that takes into account this
hierarchical structure is preferable. To achieve this, we introduce a graph-group penalty Ωg2(·). Suppose
there are 2q brain ROIs spanning the whole brain with each hemisphere having q ones, and then the k-th
(k ∈ [1, q]) ROI is composed of two parts, i.e., the left and right i-th ROIs. For simplicity, the left and
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Figure 1 (Color online) Graph-group penalty. ukl
and ukr denote the weights of the left and right parts of the k-th ROI,

respectively. The left and right parts of each ROI first form a group, and then all ROIs form a graph with the same color,

indicating a sub-graph. The dotted lines indicate that no assumption is made for the group structure, and thus every two ROIs

are connected at the beginning of the algorithm. The solid line indicates that there indeed is a connection between the two ROIs.

right k-th ROIs are denoted by kl and kr, respectively. By mapping all ROIs to a graph where vertices
have a one-to-one correspondence with ROIs, we define the graph-group penalty as follows:

Ωg2(u) =
∑

(k,t)∈E

√

u2
kl
+ u2

kr
+ u2

tl + u2
tr , (6)

where E is the edge set of the graph and u is the weight vector corresponding to ROIs.
Clearly, Ωg2(·) jointly penalizes the left and right parts of the k-th and t-th ROIs. Figure 1 is the

illustration of the graph-group penalty. According to Theorem 2 in [31], the difference between the
estimated weight values of ukl

, ukr
, utl , and utr is upper-bounded. This grouping effect accommodates

two advantages. First, the left and right parts of the same ROI could be grouped together. Second,
taking the left and right parts of an ROI as a whole, two ROIs across the brain with high correlation will
also be grouped together. Of note, the two connected ROIs do not need to be geographical neighbors.
To fully take advantage of the brain imaging data, we use the graph-group penalty in the data-driven
mode, indicating that every two ROIs are assumed to be connected at the beginning, and our model can
automatically prune those unconnected ROI pairs. In summary, this novel penalty could simultaneously
reveal the group structure and network structure in accordance with the organizational structure of the
human brain.

2.2.3 Optimization algorithm

The proposed model (3) is non-convex and thus cannot be directly solved. However, this objective will be
convex in each ui if we fix the remaining canonical weights as constants. Here, taking ui as an example,
we present how to solve the GradNorm SMCCA model via the alternative convex search method [32].

Considering uj (j 6= i) as constants, we first write the Lagrangian function of (3) with respect to ui,
i.e.,

min
ui

M∑

j=1,j 6=i

sij ‖Xiui −Xjuj‖
2
2 +



λi1

∑

(k,t)∈E

√

u2
i,kl

+ u2
i,kr

+ u2
i,tl

+ u2
i,tr

+ λi2 ‖ui‖
2
2 + γ ‖Xiui‖

2
2



 ,

(7)
where ui,kl

denotes the left k-th ROI of the canonical weight of the i-th imaging modality. Then, taking
the derivative of (7) with respect to ui and letting the gradient be zero, we can arrive at

ui =





M∑

j=1,j 6=i

sijX
T
i Xi + γXT

i Xi + λi1Dg2 + λi2I





−1 



M∑

j=1,j 6=i

sijX
T
i Xjuj



 . (8)
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Dg2 is a block diagonal matrix, and the k-th block element is (
∑q

t=1,t6=k
1

2
√

u2
i,kl

+u2
i,kr

+u2
i,tl

+u2
i,tr

)Ik, where

Ik is an identity matrix that has the same size as the k-th group. In particular, Ik equals [1 0

0 1
] because

each ROI includes the left and right components.
Next, we continue to update sij based on the GradNorm algorithm [22]. Similarly, we take the

derivative of (5) with respect to sij and set it to zero:

∂Lgrad(sij)

∂sij
= 0. (9)

Then we can easily update each sij accordingly.
Finally, we present the pseudocode in Algorithm 1, where every ui and sij are alternately calculated

until convergence. In this algorithm, the parameters are generally pre-tuned using the cross-validation
or holdout method, and thus they are treated as inputs here. Each ui (i = 1, . . . ,M) is initialized at the
beginning of the procedure. Then, a nested loop is called to find the optimal solution. In the internal
loop, each ui is alternatively updated based on the closed-form equation. The external loop is used to
update the gradient of each sub-objective.

Algorithm 1 GradNorm SMCCA algorithm

Require:

Xi ∈ Rn×p, λi1, λi2, γ, i = 1, . . . ,M .

Ensure:

Output ui, i = 1, . . . ,M .

1: Initialize ui ∈ Rp×1, sij = 1, i = 1, . . . ,M , i 6= j; � Initialization.

2: while not convergence do

3: for i = 1, . . . ,M do

4: Calculate the diagonal matrix Dg2; � Compute the current sub-gradient for the graph-group penalty.

5: Update ui according to (8) and scale ui by ui =
ui

‖Xiui‖2

; � Compute the current weight for the i-th modality.

6: end for

7: Update each sij according to (9); � Compute the current gradient for each sub-objective.

8: end while

2.2.4 Convergence analysis

We now prove the convergence of Algorithm 1.

Theorem 1. The objective value of (3) is decreased in each iteration of Algorithm 1.
Proof. Let ūi denote the updated ui for ease of presentation. According to (8), we have

M∑

j=1,j 6=i

sij ‖Xiūi −Xjuj‖
2
2 + λi1ū

T
i Dg2ūi + λi2ū

T
i ūi + γūT

i X
T
i Xiūi

6

M∑

j=1,j 6=i

sij ‖Xiui −Xjuj‖
2
2 + λi1u

T
i Dg2ui + λi2u

T
i ui + γuT

i X
T
i Xiui, (10)

which can be rewritten as

M∑

j=1,j 6=i

sij ‖Xiūi −Xjuj‖
2
2 + λi2 ‖ūi‖

2
2 + γ ‖Xiūi‖

2
2 + λi1

q
∑

k=1

q
∑

t=1;t6=k

ū2
i,kl

+ ū2
i,kr

2
√

u2
i,kl

+ u2
i,kr

+ u2
i,tl

+ u2
i,tr

6

M∑

j=1,j 6=i

sij ‖Xiui −Xjuj‖
2
2 + λi2 ‖ui‖

2
2 + γ ‖Xiui‖

2
2

+ λi1

q
∑

k=1

q
∑

t=1;t6=k

u2
i,kl

+ u2
i,kr

2
√

u2
i,kl

+ u2
i,kr

+ u2
i,tl

+ u2
i,tr

, (11)

and further

M∑

j=1,j 6=i

sij ‖Xiūi −Xjuj‖
2
2 + λi2 ‖ūi‖

2
2 + γ ‖Xiūi‖

2
2 + λi1

∑

(k,t)∈E

ū2
i,kl

+ ū2
i,kr

+ ū2
i,tl

+ ū2
i,tr

2
√

u2
i,kl

+ u2
i,kr

+ u2
i,tl

+ u2
i,tr
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6

M∑

j=1,j 6=i

sij ‖Xiui −Xjuj‖
2
2 + λi2 ‖ui‖

2
2 + γ ‖Xiui‖

2
2

+ λi1

∑

(k,t)∈E

u2
i,kl

+ u2
i,kr

+ u2
i,tl

+ u2
i,tr

2
√

u2
i,kl

+ u2
i,kr

+ u2
i,tl

+ u2
i,tr

. (12)

On the basis of the inequality in Lemma 1 of [33]: ‖a‖2 −
‖a‖2

2

2‖a0‖2
6 ‖a0‖2 −

‖a0‖
2
2

2‖a0‖2
, we easily have

√

ū2
i,kl

+ ū2
i,kr

+ ū2
i,tl

+ ū2
i,tr

−
ū2
i,kl

+ ū2
i,kr

+ ū2
i,tl

+ ū2
i,tr

2
√

u2
i,kl

+ u2
i,kr

+ u2
i,tl

+ u2
i,tr

6

√

u2
i,kl

+ u2
i,kr

+ u2
i,tl

+ u2
i,tr

−
u2
i,kl

+ u2
i,kr

+ u2
i,tl

+ u2
i,tr

2
√

u2
i,kl

+ u2
i,kr

+ u2
i,tl

+ u2
i,tr

. (13)

Then, we repeatedly apply (13) to (11) with respect to the weight of each ROI, and we arrive at

M∑

j=1,j 6=i

sij ‖Xiūi −Xjuj‖
2
2 + λi2 ‖ūi‖

2
2 + γ ‖Xiūi‖

2
2 + λi1

∑

(k,t)∈E

√

ū2
i,kl

+ ū2
i,kr

+ ū2
i,tl

+ ū2
i,tr

6

M∑

j=1,j 6=i

sij ‖Xiui −Xjuj‖
2
2 + λi2 ‖ui‖

2
2 + γ ‖Xiui‖

2
2

+ λi1

∑

(k,t)∈E

√

u2
i,kl

+ u2
i,kr

+ u2
i,tl

+ u2
i,tr

. (14)

Writing this inequality into the matrix form, we obtain

M∑

j=1,j 6=i

sij ‖Xiūi −Xjuj‖
2
2 + λi1

∑

(k,t)∈E

Ωg2(ūi) + λi2 ‖ūi‖
2
2 + γ ‖Xiūi‖

2
2

6

M∑

j=1,j 6=i

sij ‖Xiui −Xjuj‖
2
2 + λi1

∑

(k,t)∈E

Ωg2(ui) + λi2 ‖ui‖
2
2 + γ ‖Xiui‖

2
2 . (15)

Now, we can deduce that the objective decreases when updating ui. Likewise, we can draw the same
conclusion with respect to the remaining weights of [u1, . . . ,uM ]. Moreover, Lgrad(s) is convex in each
sij , and thus updating sij will not break the convergence of Algorithm 1. Combining these conclusions
together, the proof is completed.

The objective value of (3) is lower-bounded by 0. This, coupled with Theorem 1, indicates that
Algorithm 1 will converge to the global or a local optimum.

3 Experiments and results

3.1 Experiments setup

We carefully chose four related methods, namely, SMCCA, Adaptive SMCCA, GGL-SMCCA [30], and
g2SMCCA, for comparison. Because we focused on analyzing imaging data after scanning, the imaging
methods which aim to obtain imaging scans [25–28] were not included in the comparison. The decomposed
SMCCA [21] was also excluded because it was a specific form of SMCCA.

• SMCCA [20]. SMCCA directly combines multiple SCCA objects without accounting for the task
imbalance issue. Thus, it suffers from a severe optimization bias under the task imbalance circumstance.

• Adaptive SMCCA [29]. This method introduces adaptive weights to SMCCA to balance among
multiple sub-objectives. However, its task-balancing technique and additional assumption on covariance
break the Pearson correlation coefficient and might incur unknown risks [34].
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• GGL-SMCCA [30]. SMCCA and Adaptive SMCCA only use the ℓ1-norm as the penalty and thus
are insufficient to identify the complex organization of the brain. GGL-SCCA [30] can determine the
graph structure but cannot balance among multiple sub-objectives. Therefore, extended to the multi-
modal mode, GGL-SMCCA can be a good alternative to access the performance of our task-balancing
mechanism.

• g2SMCCA. This is a reduced version of our proposed method that wipes off the balancing weight
sij .

The experiments were performed via the nested fivefold cross-validation method where the inner loop
was in charge of tuning the parameters. The parameters with the highest task average canonical corre-

lation coefficients (CCCs) were regarded as the optimal parameters, where CCC =
u
T
i

X
T
i

Xjuj
√

uT
i

XT
i

Xiui

√

uT
j

XT
j

Xjuj

with Xi’s being centered. The candidate interval was first set to 10i, i = −3,−2,−1, 0, 1, 2, 3. Once we
obtained the winner parameters, denoted by Θ, we narrowed the interval, i.e., Θ± 0.5, with a small step
of 0.1. The external loop calculated and collected the experimental results of the optimal parameters.
The hyperparameter α in GradNorm was given as 0.5 because a lower value could be suitable for the
symmetric GradNorm SMCCA [22]. All the methods were run on the same software platform and data
partition. The stopping condition was set to maxi |(ui)

t+1 − (ui)
t| 6 10−5, i = 1, 2, 3.

3.2 Results on synthetic data

3.2.1 Data source

To efficiently present the performance of our method, we generated six synthetic datasets with graph-
group properties, different dimensions, and different levels of balance. The data generation procedure was
similar to that used in [29]. The latent variables µ1–µ4 ∈ R

n×1, n = 120 were generated from a standard
normal distribution, and the correlations between tasks were accommodated therein. Specifically, we
designed a group structure by assigning a pair of variables with the same value. Similarly, the variables
in the same graph were assigned the same value. This setup enabled the variables in the same group and
graph to have the same or similar contribution. Data 1–4 ∈ R

n×q1 were low dimensional with q1 = 150.
Data 5 ∈ R

n×q2 and Data 6 ∈ R
n×q3 simulated a relatively high dimensional problem where q2 = 500 and

q3 = 1000, respectively. Moreover, Data 1 simulated a task-balanced problem, and the remaining datasets
were imbalanced ones. Distinct imbalances were created by different noise intensities. Specifically, we
introduced nine intermediate vectors α1–α9 and generated the data matrices as follows:

X1 = µ1α1 + µ2α2 + µ4α3 + ǫ,

X2 = µ1α4 + µ3α5 + µ4α6 + ǫ,

X3 = µ2α7 + µ3α8 + µ4α9 + ǫ,

where ǫ was the noise signal. Thus, canonical weights were the summation of the intermediate vectors,
i.e., u1 = α1 + α2 + α3, u2 = α4 + α5 + α6, u3 = α7 + α8 + α9. By changing the noise intensities
of intermediate vectors, we can generate different levels of imbalances. The details of each dataset are
presented below.

• Data 1–4: We first introduced two vectors β1 = (2, . . . , 2
︸ ︷︷ ︸

10

, 1, . . . , 1
︸ ︷︷ ︸

10

,−1, . . . ,−1
︸ ︷︷ ︸

12

)T and β2 = (2, 2, 0, 0,

0, 0, 1, 1, 0, 0, 0, 0,−1,−1, 0, 0)T. Then the other three vectors α3 = (0, . . . , 0
︸ ︷︷ ︸

40

, β2, β2, β2, β2, 0, . . . , 0
︸ ︷︷ ︸

46

)T,

α6 = (0, . . . , 0
︸ ︷︷ ︸

30

, β1, β2, β2, 0, . . . , 0
︸ ︷︷ ︸

56

)T, and α9 = (0, . . . , 0
︸ ︷︷ ︸

50

, β1, β1, 0, . . . , 0
︸ ︷︷ ︸

36

)T. In Data 1, all the remaining

intermediate vectors followed the normal distribution N(0, 0.1), and thus all its sub-tasks were balanced.
In Data 2, α1 and α4 followed N(0, 0.2), and thus it was a task-imbalanced problem. Similarly, in Data 3,
α2 and α7 were generated fromN(0, 0.2). In Data 4, its α5 and α8 followedN(0, 0.2). Therefore, Data 2–4
were unbalanced datasets.

• Data 5: β3 = (2, . . . , 2
︸ ︷︷ ︸

20

, 1, . . . , 1
︸ ︷︷ ︸

20

,−1, . . . ,−1
︸ ︷︷ ︸

24

)T, β4 = (2, . . . , 2
︸ ︷︷ ︸

8

, 0, . . . , 0
︸ ︷︷ ︸

8

, 1, . . . , 1
︸ ︷︷ ︸

8

, 0, . . . , 0
︸ ︷︷ ︸

8

,−1, . . . ,−1
︸ ︷︷ ︸

8

,

0, . . . , 0
︸ ︷︷ ︸

8

)T. α3 = (0, . . . , 0
︸ ︷︷ ︸

170

, β4, β4, β4, β4, 0, . . . , 0
︸ ︷︷ ︸

138

)T, α6 = (0, . . . , 0
︸ ︷︷ ︸

150

, β3, β3, β4, β4, 0, . . . , 0
︸ ︷︷ ︸

126

)T, α9 = (0, . . . , 0
︸ ︷︷ ︸

200

,
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Table 1 CCCs (mean±std) estimated from synthetic data setsa)

Training canonical correlation coefficient Testing canonical correlation coefficient

SMCCA
GGL

SMCCA

Adaptive

SMCCA
g2SMCCA

GradNorm

SMCCA
SMCCA

GGL

SMCCA

Adaptive

SMCCA
g2SMCCA

GradNorm

SMCCA

Data 1

Task1 0.78±0.01 0.78±0.01 0.78±0.01 0.81±0.01 0.84±0.01 0.66±0.08 0.68±0.08 0.66±0.09 0.74±0.06 0.75±0.05

Task2 0.83±0.01 0.84±0.01 0.83±0.01 0.85±0.01 0.87±0.01 0.77±0.09 0.78±0.08 0.77±0.09 0.79±0.08 0.80±0.07

Task3 0.85±0.02 0.86±0.01 0.85±0.02 0.88±0.02 0.91±0.01 0.76±0.08 0.78±0.08 0.75±0.09 0.82±0.07 0.82±0.07

Average 0.82 0.83 0.82 0.84 0.87 0.73 0.74 0.73 0.78 0.79

Data 2

Task1 0.74±0.02 0.66±0.01 0.74±0.02 0.73±0.01 0.81±0.01 0.57±0.17 0.48±0.20 0.57±0.15 0.66±0.04 0.71±0.09

Task2 0.75±0.03 0.68±0.01 0.76±0.02 0.78±0.02 0.86±0.01 0.60±0.12 0.52±0.15 0.62±0.13 0.68±0.10 0.74±0.10

Task3 0.78±0.04 0.72±0.05 0.80±0.04 0.84±0.02 0.91±0.01 0.66±0.11 0.56±0.15 0.69±0.11 0.77±0.09 0.81±0.05

Average 0.76 0.69 0.77 0.79 0.86 0.61 0.52 0.63 0.70 0.76

Data 3

Task1 0.80±0.02 0.72±0.03 0.80±0.02 0.81±0.01 0.86±0.01 0.67±0.17 0.53±0.22 0.67±0.17 0.70±0.14 0.76±0.11

Task2 0.79±0.04 0.73±0.06 0.80±0.04 0.81±0.03 0.86±0.01 0.64±0.12 0.48±0.21 0.64±0.14 0.69±0.13 0.73±0.11

Task3 0.84±0.02 0.81±0.02 0.85±0.02 0.88±0.01 0.93±0.01 0.74±0.08 0.66±0.11 0.76±0.08 0.80±0.11 0.86±0.07

Average 0.81 0.75 0.82 0.83 0.88 0.68 0.56 0.69 0.73 0.78

Data 4

Task1 0.75±0.01 0.68±0.04 0.75±0.01 0.77±0.02 0.82±0.01 0.63±0.14 0.52±0.18 0.62±0.14 0.68±0.10 0.73±0.06

Task2 0.77±0.01 0.73±0.02 0.78±0.01 0.79±0.01 0.84±0.01 0.66±0.07 0.50±0.18 0.68±0.06 0.74±0.03 0.75±0.03

Task3 0.80±0.02 0.74±0.03 0.81±0.02 0.84±0.02 0.91±0.01 0.65±0.09 0.51±0.15 0.68±0.09 0.76±0.06 0.80±0.05

Average 0.77 0.72 0.78 0.80 0.86 0.65 0.51 0.66 0.73 0.76

Data 5

Task1 0.89±0.03 0.84±0.04 0.91±0.02 0.94±0.01 0.97±0.01 0.73±0.13 0.58±0.14 0.79±0.11 0.85±0.07 0.87±0.06

Task2 0.89±0.02 0.84±0.04 0.91±0.01 0.94±0.01 0.97±0.01 0.76±0.08 0.64±0.05 0.81±0.09 0.84±0.10 0.87±0.09

Task3 0.91±0.01 0.87±0.03 0.92±0.01 0.95±0.01 0.98±0.01 0.78±0.08 0.67±0.08 0.83±0.07 0.88±0.05 0.90±0.05

Average 0.90 0.85 0.91 0.94 0.97 0.76 0.63 0.81 0.86 0.88

Data 6

Task1 0.93±0.01 0.90±0.02 0.94±0.01 0.95±0.01 0.97±0.01 0.86±0.07 0.79±0.09 0.89±0.06 0.91±0.05 0.93±0.04

Task2 0.93±0.02 0.91±0.03 0.95±0.01 0.96±0.01 0.98±0.01 0.85±0.07 0.80±0.08 0.88±0.06 0.90±0.04 0.93±0.03

Task3 0.95±0.01 0.93±0.02 0.96±0.01 0.97±0.01 0.98±0.01 0.88±0.05 0.83±0.06 0.91±0.04 0.92±0.03 0.95±0.02

Average 0.94 0.92 0.95 0.96 0.98 0.86 0.81 0.89 0.91 0.94

a) The best average value was shown in bold.

β3, β3, β3, 0, . . . , 0
︸ ︷︷ ︸

108

)T. The intermediate vectors α1 and α4 followed N(0, 0.2), where the other vectors

followed N(0, 0.1).
• Data 6: β5 = (2, . . . , 2

︸ ︷︷ ︸

40

, 1, . . . , 1
︸ ︷︷ ︸

40

,−1, . . . ,−1
︸ ︷︷ ︸

40

)T, β6 = (2, . . . , 2
︸ ︷︷ ︸

10

, 0, . . . , 0
︸ ︷︷ ︸

10

, 1, . . . , 1
︸ ︷︷ ︸

10

, 0, . . . , 0
︸ ︷︷ ︸

10

,−1, . . . ,−1
︸ ︷︷ ︸

10

,

0, . . . , 0
︸ ︷︷ ︸

10

)T. α3 = (0, . . . , 0
︸ ︷︷ ︸

350

, β6, . . . , β6
︸ ︷︷ ︸

6

, 0, . . . , 0
︸ ︷︷ ︸

290

)T, α6 = (0, . . . , 0
︸ ︷︷ ︸

300

, β5, β5, β6, β6, 0, . . . , 0
︸ ︷︷ ︸

340

)T, α9 = (0, . . . , 0
︸ ︷︷ ︸

400

,

β5, β5, β5, 0, . . . , 0
︸ ︷︷ ︸

240

)T. The intermediate vectors α1 and α4 followed N(0, 0.2), and the remaining vec-

tors were generated from N(0, 0.1). Thus, Data 5 and 6 were unbalanced datasets with relatively high
dimensions.

3.2.2 Multi-way association identification

In this study, we used the CCCs as the first evaluation criterion. A higher CCC score stands for better
performance. Table 1 shows the training and testing CCCs of all methods and the average value across
three tasks. Clearly, GradNorm SMCCA obtained the best average CCCs for all the datasets, indicating
its outperformed overall performance. g2SMCCA was inferior to GradNorm SMCCA but was better than
the remaining benchmarks. This finding demonstrated that using the novel graph-group penalty can
enhance the identification power. In particular, all the methods performed well on Data 1. Hence, under
a balanced situation, with or without the loss-balancing mechanism can handle it. However, on Data 2–6,
where different sub-objectives were imbalanced, GradNorm SMCCA significantly outperformed the other
competitors. Moreover, in all unbalanced datasets, Adaptive SMCCA performed better than SMCCA.
This finding revealed the necessity of equipping with the task-balancing mechanism. Moreover, on all
six datasets, g2SMCCA performed better than SMCCA and GGL SMCCA and thus indicated that the
graph-group penalty could help improve the association by identifying hierarchical imaging features. In
summary, GradNorm SMCCA performed the best in terms of CCC owing to its task-balancing technique
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Figure 2 (Color online) Comparison of canonical weights in terms of each task for six synthetic datasets. The top row exhibits

the ground truth, and the other rows correspond to the SMCCA methods: (1) SMCCA; (2) GGL SMCCA; (3) Adaptive SMCCA;

(4) g2SMCCA; (5) GradNorm SMCCA. Moreover, there are three rows associated with three tasks (T1, T2, T3) in each panel.

and graph-group penalty.

3.2.3 Feature selection

In addition to CCCs, feature selection is also a very important criterion. We exhibited the feature
selection results in Figure 2. Again, all methods performed successfully identified the true signals on
Data 1 because it was an easy problem. On Data 2–6, where multiple sub-objectives were unequal, our
method performed the best because the comparison methods lost several features for some sub-tasks.
For example, for the third sub-task, GradNorm SMCCA recovered the truest signals. Compared to
g2SMCCA, GradNorm SMCCA recognized comprehensive nonzero features for most tasks. For instance,
in Data 4, GradNorm SMCCA identified more signals missed by g2SMCCA, especially in task 1. Hence,
the task-balancing technique could also improve the overall feature subset selection. Moreover, owing
to the graph-group penalty, the features selected by g2SMCCA and GradNorm SMCCA showed a clear
group structure. While the heatmap is somewhat qualitative, a quantitative evaluation criterion could be
desirable. Therefore, we further employed the sensitivity and specificity [35] for a quantitative comparison.
The sensitivity was defined as true positive in the top K selected features

K , and the specificity was calculated

according to K
selected features required to cover the ground truth , where K denotes the number of nonzero features

in line with the ground truth. In both criteria, the higher, the better, as presented in Table 2. Evidently,
GradNorm SMCCA outperformed the five methods with respect to the average value, even on task-
balanced Data 1. Of note, g2SMCCA also performed better than the other four methods due to its
well-designed graph-group penalty. Interestingly, our method did not obtain the best value for all sub-
objectives as we were concerned with the overall performance instead of every single sub-objective. In
multi-task learning, the optimum of a single task was not always the best on the whole [36]. On this
account, our method obtained the best overall scores but was inferior to SMCCA for a few specific sub-
tasks. Combining the results of GradNorm SMCCA, g2SMCCA, and Adaptive SMCCA, we could deduce
that the use of either the task-balancing technique or graph-group penalty could be insufficient, which
confirmed the advantage of GradNorm SMCCA.

3.3 Results on real neuroimaging data

3.3.1 Data source

We utilized the brain imaging data obtained from the ADNI database (adni.loni.usc.edu). The prime
purpose of this initiative is to test whether serial magnetic resonance imaging (MRI), positron emission
tomography (PET), other biological markers, and clinical and neuropsychological assessment can be
combined to measure the progression of mild cognitive impairment (MCI) and early AD. For up-to-date
information, see www.adni-info.org.

In Table 3, we show the detailed information of 679 non-Hispanic Caucasian participants, including 164
healthy control (HC), 262 MCI, and 253 AD subjects. We used three modalities of brain imaging data
containing the 18-F florbetapir PET (AV45) scans, fluorodeoxyglucose PET (FDG) scans, and structural



Du L, et al. Sci China Inf Sci April 2023 Vol. 66 142106:11

Table 2 Sensitivity and specificity estimated from synthetic datasetsa)

Sensitivity Specificity

SMCCA
GGL

SMCCA

Adaptive

SMCCA
g2SMCCA

GradNorm

SMCCA
SMCCA

GGL

SMCCA

Adaptive

SMCCA
g2SMCCA

GradNorm

SMCCA

Data 1

Task1 0.83±0.01 0.79±0.01 0.83±0.01 0.92±0.01 0.92±0.01 0.97±0.05 0.96±0.05 0.97±0.05 0.98±0.06 0.98±0.07

Task2 0.86±0.01 0.86±0.01 0.86±0.01 0.86±0.02 0.86±0.02 0.94±0.03 0.94±0.03 0.94±0.03 0.94±0.05 0.94±0.04

Task3 0.89±0.01 0.89±0.01 0.89±0.01 0.94±0.03 0.91±0.02 0.92±0.01 0.92±0.01 0.92±0.01 0.95±0.04 0.93±0.02

Average 0.86 0.85 0.86 0.91 0.90 0.94 0.94 0.94 0.96 0.95

Data 2

Task1 0.79±0.01 0.75±0.01 0.79±0.01 0.83±0.01 0.88±0.01 0.96±0.04 0.95±0.06 0.96±0.04 0.97±0.03 0.98±0.06

Task2 0.80±0.02 0.80±0.02 0.80±0.01 0.86±0.02 0.84±0.02 0.92±0.04 0.92±0.04 0.92±0.03 0.94±0.05 0.93±0.05

Task3 0.91±0.03 0.91±0.02 0.91±0.03 0.88±0.01 0.86±0.02 0.93±0.04 0.93±0.03 0.93±0.04 0.91±0.02 0.90±0.02

Average 0.83 0.82 0.83 0.86 0.86 0.94 0.93 0.94 0.94 0.94

Data 3

Task1 0.67±0.01 0.67±0.00 0.71±0.01 0.83±0.01 0.83±0.01 0.94±0.03 0.94±0.02 0.94±0.03 0.97±0.05 0.97±0.04

Task2 0.84±0.02 0.82±0.02 0.86±0.01 0.89±0.01 0.84±0.02 0.93±0.05 0.92±0.04 0.94±0.03 0.95±0.03 0.93±0.04

Task3 0.92±0.03 0.92±0.03 0.92±0.04 0.89±0.04 0.92±0.04 0.94±0.04 0.94±0.04 0.94±0.05 0.92±0.05 0.94±0.05

Average 0.81 0.80 0.83 0.87 0.87 0.94 0.93 0.94 0.95 0.95

Data 4

Task1 0.75±0.01 0.71±0.01 0.75±0.01 0.83±0.01 0.83±0.01 0.95±0.03 0.94±0.07 0.95±0.07 0.97±0.05 0.97±0.04

Task2 0.75±0.01 0.75±0.02 0.77±0.01 0.84±0.02 0.86±0.01 0.90±0.03 0.90±0.04 0.91±0.03 0.93±0.04 0.94±0.03

Task3 0.81±0.02 0.78±0.03 0.81±0.02 0.88±0.03 0.80±0.03 0.86±0.03 0.84±0.04 0.86±0.03 0.91±0.04 0.85±0.04

Average 0.77 0.75 0.78 0.85 0.83 0.90 0.89 0.91 0.94 0.92

Data 5

Task1 0.82±0.01 0.81±0.01 0.82±0.01 0.86±0.00 0.84±0.01 0.96±0.03 0.96±0.03 0.96±0.03 0.97±0.02 0.96±0.03

Task2 0.84±0.02 0.82±0.02 0.84±0.02 0.86±0.01 0.85±0.02 0.91±0.04 0.90±0.04 0.91±0.03 0.93±0.03 0.92±0.03

Task3 0.84±0.02 0.83±0.02 0.84±0.02 0.83±0.02 0.84±0.02 0.90±0.03 0.89±0.03 0.90±0.03 0.90±0.03 0.90±0.03

Average 0.83 0.82 0.83 0.85 0.84 0.92 0.92 0.92 0.93 0.93

Data 6

Task1 0.79±0.00 0.79±0.00 0.79±0.00 0.81±0.00 0.82±0.00 0.95±0.02 0.95±0.02 0.95±0.02 0.96±0.02 0.96±0.02

Task2 0.85±0.01 0.85±0.01 0.85±0.01 0.88±0.01 0.90±0.01 0.94±0.02 0.94±0.02 0.94±0.02 0.95±0.02 0.96±0.02

Task3 0.88±0.01 0.88±0.01 0.88±0.01 0.89±0.01 0.90±0.00 0.93±0.01 0.93±0.02 0.93±0.01 0.94±0.02 0.94±0.01

Average 0.84 0.84 0.84 0.86 0.87 0.94 0.94 0.94 0.95 0.95

a) The best values were shown in bold.

Table 3 Participant characteristics

HC MCI AD

Num 164 262 253

Gender (M/F , %) 49.39/50.61 49.62/50.38 53.75/46.25

Handedness (R/L, %) 90.24/9.76 88.93/11.07 90.91/9.09

Age (mean±std.) 73.95±5.56 70.89±6.97 72.75±8.19

Education (mean±std.) 16.34±2.61 16.18±2.73 15.98±2.78

MRI (sMRI) scans. The FDG and AV45 scans were registered into the standard montreal neurological
institute (MNI) space. We processed the sMRI data with voxel-based morphometry (VBM) through
statistical parametric mapping (SPM) and aligned them to a T1-weighted template image, segmented
into gray matter (GM), white matter (WM), and cerebrospinal fluid (CSF) maps. Then, the scans were
also normalized to the standard MNI space and smoothed with an 8 mm3 full width at half maximum
(FWHM) kernel. All of the imaging data were aligned to each subject’s same visit. Thereafter, 116
ROI level measurements were generated based on the MarsBaR automated anatomical labeling atlas.
To remove the effects of the baseline age, gender, education, and handedness, the data were further
adjusted by regression weights generated from HCs. We aim to examine the multi-way association
between multimodal imaging data and select AD-relevant imaging QTs.

3.3.2 Multi-way association identification and objective convergence

Table 4 exhibits the training and testing CCCs of each sub-objective and their average value. Because
there were three modalities of imaging data, each method had three pairwise CCCs corresponding to three
sub-objectives. For simplicity, we use AV45-FDG to denote the CCC between AV45 and FDG, and so
forth. As many important ROIs of the FDG and VBM overlapped and they were very different from those
of AV45, the CCC of FDG-VBM was much higher than those of AV45-FDG and AV45-VBM. Clearly,
except for FDG-VBM, GradNorm SMCCA obtained the best CCCs of all the comparison methods. In
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Table 4 CCCs (mean±std.) estimated between three types of imaging QTsa)

Method AV45-FDG AV45-VBM FDG-VBM Average

Training

SMCCA 0.35±0.07 0.30±0.07 0.56±0.04 0.40

GGL SMCCA 0.33±0.04 0.28±0.04 0.51±0.10 0.37

Adaptive SMCCA 0.37±0.06 0.31±0.07 0.55±0.05 0.41

g2SMCCA 0.40±0.09 0.34±0.11 0.51±0.09 0.42

GradNorm SMCCA 0.45±0.13 0.39±0.15 0.51±0.07 0.45

Testing

SMCCA 0.32±0.06 0.27±0.09 0.52±0.06 0.37

GGL SMCCA 0.28±0.05 0.22±0.04 0.43±0.15 0.31

Adaptive SMCCA 0.34±0.06 0.28±0.09 0.49±0.05 0.37

g2SMCCA 0.38±0.06 0.31±0.09 0.47±0.08 0.39

GradNorm SMCCA 0.43±0.10 0.36±0.11 0.47±0.07 0.42

a) The best values were shown in bold.
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Figure 3 (Color online) Curves of (a) the overall loss function and (b) the loss of each sub-objective. Different sub-objectives

follow different solution paths owing to the gradient balancing strategy. Without gradient balancing, sub-objective 2 will keep

decreasing, and the overall objective will be suboptimal.

particular, SMCCA performed the best on FDG-VBM. This finding implies that SMCCA was focused
on this sub-objective with those remaining ones insufficiently optimized, which confirmed the existence
of loss imbalance and the dominance of the sub-objective of FDG-VBM for this real problem. Although
our method did not achieve the highest CCC on FDG-VBM, the highest values were obtained on the
remaining two sub-objectives and the overall average value. Hence, our method ensured comprehensive
optimization. Adaptive SMCCA improved the performance of SMCCA but was still defeated by our
method. GGL SMCCA and g2SMCCA did no consider loss balancing, and thus their losses were partially
optimized as well. Moreover, all three CCCs of g2SMCCA were higher than those of SMCCA and GGL
SMCCA, demonstrating that identifying reasonable graph-group structures could yield improved CCCs.

In addition, we present the objective curves in Figure 3. The loss function converged to the minimum
around the 50th iteration and remained stable after that. Thus, Theorem 1 and the convergence curve
could demonstrate that our method converges fast for this real problem. In addition, the third sub-
objective first increased and then decreased during the optimization. This trajectory ensures that the
overall objective will be optimal, which is guaranteed by the gradient balancing strategy. All the results
show that GradNorm SMCCA had the highest average CCC and outperformed the other methods on
most sub-objectives with its well-designed graph-group penalty and smart loss balancing mechanism.

3.3.3 Feature selection

Figure 4 shows the heatmap regarding the selected imaging features. Each method could screen out sev-
eral AD-related ROIs. Most highlighted ROIs were shared by all the methods, including the hippocampus
and medial orbital frontal, proving the worth of identifying the multi-way association among multimodal
data. In addition, g2SMCCA and GradNorm SMCCA found the parahippocampal, precuneus, and mid-
dle and inferior temporal in FDG, which were missed by the other methods. Clearly, GradNorm SMCCA,
g2SMCCA, and GGL SMCCA reported group and network structures owing to their structured regular-
ization. However, GradNorm SMCCA and g2SMCCA were better than GGL SMCCA, which could be
evidence suggesting that the graph-group penalty is better than the GGL penalty. In addition, compared
to g2SMCCA, GradNorm SMCCA identified more AD-related ROIs, again demonstrating the merit of
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Figure 4 (Color online) Comparison of canonical weights in terms of each modality: AV45, FDG, and VBM (from top to bottom).

Each row corresponds to an SMCCA method: (1) SMCCA; (2) GGL SMCCA; (3) Adaptive SMCCA; (4) g2SMCCA; (5) GradNorm

SMCCA.
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Figure 5 (Color online) Top 20 identified ROIs and their network connection of each modality. Each ROI is visualized as an arc,

and ROIs of the same network are connected by lines of the same color. Each sub-figure corresponds to an imaging modality, i.e.,

(a) AV45, (b) FDG, and (c) VBM.

its loss-balancing strategy that fairly optimized all sub-objectives. In a word, these results demonstrate
that the graph-group penalty and loss-balancing strategy endowed our method with a comprehensive and
meaningful feature selection capability.

3.3.4 Post analysis and interpretation

To clearly exhibit the identified graph and group structures, Figure 5 visualizes the graph and group in
terms of the selected ROIs of the three imaging modalities. Here, we show the network formed by the

top 20 ROIs for each modality. In particular, if two ROIs were close enough, e.g., D = (
||uik

|−|uit
||

|uik
| +

||uik
|−|uit

||

|uit
| )/2 6 ǫ, where ǫ is a desirable threshold, they belonged to the same sub-network, and an

edge (line) connected both ROIs in the figure. Because the scans of different imaging technologies were
different, we showed three networks associated with the three modalities. The network (circle) was
composed of multiple ROIs (visualized as arcs) with the label annotated nearby. Clearly, our method
identified several meaningful networks for AD, such as the amyloid deposition network formed by frontal
areas and temporal areas in the AV45 scans. Besides, we also mapped these networks into the brain in
Figure 6 [37]. These results show that our method identified group and network relationships among
ROIs spanning the whole brain.

Moreover, for each diagnostic group, including HCs, MCIs, and ADs, we might be interested in identi-
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(a) (b) (c)

Figure 6 (Color online) Visualization of the identified ROIs and their network connection mapped on the brain. Each sub-figure

corresponds to an imaging modality, i.e., (a) AV45, (b) FDG, and (c) VBM. Within each sub-figure, the left part (denoted by “L”)

is the lateral and medial views of the left hemisphere, the right side (denoted by “R”) is those of the right hemisphere, and the

middle is the dorsal view of the brain.
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Figure 7 (Color online) Average value of the network ROI in each diagnosis category. Each sub-figure corresponds to an imaging

modality, i.e., (a) AV45, (b) FDG, and (c) VBM. Within each sub-figure, the horizontal axis represents the category, and the vertical

axis represents the average value. Different color bars denote different ROIs, and the labels and colors of ROIs are annotated next

to the histogram. For clarity, we have marked several important values with dotted lines.

fying whether the identified networks were distinct among different groups. For each imaging modality,
we chose the most significant network that was composed of the top selected ROIs within each modality.
We showed their measurements in Figure 7. We also drew a few dotted lines to aid in distinguishing
between different diagnostic groups. Clearly, prominent differences were observed for different groups.
For AV45 scans, the patients with AD tended to gain elevated amyloid protein deposition than MCIs and
HCs, and further MCIs had a more elevated deposition than HCs. Meanwhile, the network of the VBM
scans showed an opposite pattern. Specifically, AD’s network exhibited more atrophy than MCIs and
HCs, and that of MCIs was more severe than that of HCs. These figures also convey that as dementia
progresses, the brain atrophy gets more severe, the metabolic rates of cerebral glucose decline, and the ex-
tracellular amyloid deposition gradually elevates. These patterns were consistent with the neuroimaging
manifestations of AD, which demonstrates that GradNorm can select valuable networks.

4 Conclusion

Seeking complicated relationships among multimodal brain imaging data is important and meaningful.
Accordingly, we propose the GradNorm SMCCA method with adaptive loss balancing and graph-group
penalty. The adaptive loss balancing adjusts the importance of each sub-objective by iteratively modifying
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the gradient magnitudes. The graph-group regularization hierarchically penalizes ROIs at the graph and
group levels. Therefore, GradNorm SMCCA can identify deep structural information and simultaneously
accommodate an overall optimization. We also provide an efficient optimization algorithm and analyze
its convergence. The experiment results on the synthetic and real ADNI data show that GradNorm
SMCCA obtained higher average CCCs and better canonical weights. GradNorm SMCCA also identified
meaningful networks for each imaging modality. These results demonstrate that GradNorm SMCCA
was a powerful software tool and thus had a broad application prospect in aiding clinicians to determine
suspicious imaging features and networks.
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